
Getting Started with Godot
Simple XR Rig
VR Controller Input in Godot
Basic Grab
Common 3D Features

Godot

Before jumping into VR, you should get yourself acquainted with the engine and how things work.
Godot utilizes a node-based system, similar to Unity except everything is its own node.

Godot also has its own scripting language, GDScript, which is very similar to python. Most of the
tutorials, guides, and resources you find online will make use of GDScript.

There is also support for C# which I recommend for both speed and consistency with the
similarities with Unity. The C# community within Godot is growing fast as well.

Documentation

https://docs.godotengine.org/en/stable/index.html

Overview of Godot's key concepts

https://docs.godotengine.org/en/stable/getting_started/introduction/key_concepts_overview.html#s
cenes

Your first 3D game

https://docs.godotengine.org/en/stable/getting_started/first_3d_game/index.html

Additional Resources

How to make a Video Game - Brackeys

Getting Started with Godot

https://docs.godotengine.org/en/stable/index.html
https://docs.godotengine.org/en/stable/getting_started/introduction/key_concepts_overview.html#scenes
https://docs.godotengine.org/en/stable/getting_started/introduction/key_concepts_overview.html#scenes
https://docs.godotengine.org/en/stable/getting_started/first_3d_game/index.html
https://www.youtube.com/watch?v=LOhfqjmasi0&t=2969s

A lot has changed from the original version of this page. Below, I have linked the first article but
you must follow all the chapters. These include:

Introduction to the XR system in Godot
Prerequisites for XR in Godot 4
OpenXR
Setting up the XR scene

Setting up OpenXR

https://docs.godotengine.org/en/stable/tutorials/xr/setting_up_xr.html

Simple XR Rig

You may find the following two articles: Introduction to XR Tools and Basic XR
Locomotion. These articles are valid but I would caution against using them and consider
designing your own implementation and use these articles for reference only. If you have
completed work in Unreal for things like teleportation, you will find there is a cross-over on
making this work in Godot/Unity/etc. by translating the nodes into the APIs in the newer
engine. I (Wes) am happy to assist.

https://docs.godotengine.org/en/stable/tutorials/xr/setting_up_xr.html

I use C# for coding in Godot due to the speed and resources (we need all the resources we can get
when building with VR). Below is an example using C# but can be converted to GDScript as well.

For more information about C# in Godot:

https://docs.godotengine.org/en/stable/tutorials/scripting/c_sharp/c_sharp_basics.html

Assuming you have followed the previous tutorial and confirmed VR is working with controller
visuals (even cubes) and OpenXR, you can get started.

By default, after installing OpenXR within Godot enables a default OpenXR Action Map. Typically,
I leave these defaults alone. There is a good article in the documentation that reviews how to
create your own custom inputs, but these work great.

The event structure on how you process this input is up to you! Below is an EXAMPLE but should be
structured!

1. Create subscription events for ButtonPressed and ButtonReleased.

Create a script on your XRController3D node (the VR controller) and the script should inherit from
XRController3D.

Inside the script, create two override functions: _EnterTree() and _Exit Tree(). Add ButtonPressed
and ButtonReleased and subscribe to a method. Here is the layout:

VR Controller Input in Godot
Preface:

Getting Started

public override void _EnterTree()
{
 ButtonPressed += OnButtonPressed;
 ButtonReleased += OnButtonReleased;
}

public override void _ExitTree()
{
 ButtonPressed -= OnButtonPressed;
 ButtonReleased -= OnButtonReleased;

https://docs.godotengine.org/en/stable/tutorials/scripting/c_sharp/c_sharp_basics.html

Now, create two functions, OnButtonPressed and OnButtonReleased:

2. Process events

You will notice on the methods created above that there is a parameter called string name. This
string is what is received from your OpenXR Action Map (or anything else with a button). For me,
I have added a switch statement to process these inputs and invoke methods:

}

void OnButtonPressed(string name)
{

}

void OnButtonReleased(string name)
{

}

 void OnButtonPressed(string name)
 {
 switch (name)
 {
 case "grip_click":
 OnGripPressed();
 break;
 case "trigger_click":
 OnTriggerPressed();
 break;
 case "ax_button":
 OnAXPressed();
 break;
 case "by_button":
 OnBYPressed();
 break;
 }
 }

 void OnButtonReleased(string name)
 {

I'm not including every single method, but you can see that I now have a system to process input!

3. Expand (with some Object Oriented Programming)!!

Obviously, this script would be a pain to copy for both hands and alter the names of the methods
slightly. You can do this if you wish to keep it simple.

Object Oriented Programming (OOP):

For me, I created a parent script called something like XRHand.cs. Then, I created two scripts called
LeftHand.cs and RightHand.cs that are children of XRHand. Using the methods above, I made them
virtual so in my LeftHand.cs script for example, I can configure special implementation.

Here is the final script for XRHand.cs

 switch (name)
 {
 case "grip_click":
 OnGripReleased();
 break;
 case "trigger_click":
 OnTriggerReleased();
 break;
 case "ax_button":
 OnAXReleased();
 break;
 case "by_button":
 OnBYReleased();
 break;
 }
 }

using Godot;
using System;

public partial class XRHand : XRController3D
{
 public override void _EnterTree()
 {
 ButtonPressed += OnButtonPressed;

 ButtonReleased += OnButtonReleased;

 InputFloatChanged += OnInputFloatChanged;

 InputVector2Changed += OnInputVector2Changed;
 }

 public override void _ExitTree()
 {
 ButtonPressed -= OnButtonPressed;
 ButtonReleased -= OnButtonReleased;

 InputFloatChanged -= OnInputFloatChanged;

 InputVector2Changed -= OnInputVector2Changed;
 }

 void OnButtonPressed(string name)
 {
 switch (name)
 {
 case "grip_click":
 OnGripPressed();
 break;
 case "trigger_click":
 OnTriggerPressed();
 break;
 case "ax_button":
 OnAXPressed();
 break;
 case "by_button":
 OnBYPressed();
 break;
 }
 }

 void OnButtonReleased(string name)
 {
 switch (name)
 {

 case "grip_click":
 OnGripReleased();
 break;
 case "trigger_click":
 OnTriggerReleased();
 break;
 case "ax_button":
 OnAXReleased();
 break;
 case "by_button":
 OnBYReleased();
 break;
 }
 }

 void OnInputFloatChanged(string name, double value)
 {

 }

 void OnInputVector2Changed(string name, Vector2 value)
 {
 switch (name)
 {
 case "primary":
 OnThumbstickMoved(value);
 break;
 }
 }

 // Digital Input
 public virtual void OnGripPressed() { }
 public virtual void OnGripReleased() { }
 public virtual void OnTriggerPressed() { }
 public virtual void OnTriggerReleased() { }
 public virtual void OnAXPressed() { }
 public virtual void OnAXReleased() { }
 public virtual void OnBYPressed() { }
 public virtual void OnBYReleased() { }

And as for LeftHand.cs or RightHand.cs, I would just override a button that I would need:

The LeftHand.cs and RightHand.cs would now go on their respective XRController3D nodes, in the
scene.

 // Axial-1D Input

 // Axial-2D Input
 public virtual void OnThumbstickMoved(Vector2 value) { }

 // Signals

}

using Godot;
using System;

public partial class LeftHand : XRHand
{
 public override void OnGripPressed()
 {
 GD.Print("Right grip released!");
 }

 public override void OnGripReleased()
 {
 GD.Print("Left grip released!");
 }
}

Basic familiarity with nodes in Godot
XRRig
Controller Input
Ensure you have a ready LeftHand and RightHand script for input.

For each XRController3D node (VR hands), add an Area3D node as a child. You should get a
warning about the Area node needing a collision shape, so add a new CollisionShape3D node as
a child of the Area3D node. For my Shape type, I chose a new SphereShape3D and gave it a
radius of 0.1m. Do this for all XRController3D nodes if you are using pickup interactions.

Basic Grab
Prerequisites:

Setup for XR Rig

https://scil-wiki.su.edu/books/godot/page/getting-started-with-godot
https://scil-wiki.su.edu/books/godot/page/simple-xr-rig
https://scil-wiki.su.edu/books/godot/page/vr-controller-input-in-godot
https://scil-wiki.su.edu/uploads/images/gallery/2025-04/screenshot-2025-04-28-102007.png

In your "world" scene, add a RigidBody3D node to your scene and add a CollisionShape3D and
MeshInstance3D node as children, as well as any setup needed for those nodes. In the
RigidBody3D node, create a new script called Grippable.cs and ensure the script is attached.
Now, let's add some code:

Setup basic grabbing

using Godot;
using System;

public partial class SimpleGrab : RigidBody3D, IGrabbable
{
	Node3D parentNode;

 public override void _Ready()
 {
 parentNode = (Node3D)this.GetParent();
 }

 public void PickUp(Node3D receivedController)
	{

https://scil-wiki.su.edu/uploads/images/gallery/2025-04/screenshot-2025-04-28-102025.png

Let's review what's happening here:

The parentNode is a variable used to cache where we need to re-parent this object when
it is dropped, which is usually back to the world. In our _Ready method, we just get the
current parent.
The Pickup method and its reference to the controller doing the interaction is done here.
We freeze physics while we are holding this object and parent it to our controller. The
true parameter in Reparent is passed to keep the global transform before parenting so
the pickup looks like we are grabbing an intended point.
The Drop method does the reverse of of Pickup, except an added line that gives the
object velocity from the controller when the object is let go. There is an optional line if you
wish to use CallDeferred instead of SetAxisVelocity (for advanced users).

Assuming you have completed all necessary prerequisites, you should have a LeftHand.cs and a
RightHand.cs with some possible functionality. Here is additional code to add to each hand:

		Freeze = true;

		Reparent(receivedController, true);
	}

	public void Drop(Vector3 receivedVelocity)
	{
		Freeze = false;

		Reparent(parentNode);

		//CallDeferred("set_axis_velocity", receivedVelocity);
		SetAxisVelocity(receivedVelocity);
	}
}

Add functionality to our hand (each)

 Vector3 velocity;
 Vector3 previousPosition;

 Area3D area;
 Grippable grippable;

Let's review what this code achieves:

 public override void _Ready()
 {
 area = GetNode<Area3D>("Area3D");
 }

 public override void _Process(double delta)
 {
 velocity = (Position - previousPosition) / (float)delta;
 previousPosition = Position;
 }

 public override void OnGripPressed()
 {
 var bodies = area.GetOverlappingBodies();
 foreach (var body in bodies)
 {
 if (body is Grippable _)
 {
 grippable = body as Grippable;

 grippable.PickUp(this);

 return;
 }
 }
 }

 public override void OnGripReleased()
 {
 if (grippable != null)
 {
 grippable.Drop(velocity);
 }
 grippable = null;
 }

A variable, velocity, is added for when we need to let to drop an object and give it
velocity. The benefit is this calculation does not involve a physics node or other physics
calculations that are not needed. You may optionally add a boolean flag in the _Process
method if you do not wish to calculate velocity every frame except for when you are
actually holding holding something.
In OnGrippedPressed, we use our Area3D node to check all overlapping bodies. If one
of these bodies is a Grippable type, then we attempt to pick it up and return out of the
method.
For OnGrippedReleased, we do a check to see if we are actually holding a grippable
object and, if we are, we drop the object and pass along our hand's velocity. Finally, we
indicate we are no longer holding anything in this hand.

If you have reached this stage, go ahead and test functionality with both hands.

If you are looking to add advanced interactions like sliders and dials, I may recommend keeping
these methods for grabbing types, but add new classes that track the controller's movement
instead of parenting when picked up or dropped.

Testing

Where to go from here?

This page consists of the culmination of the Brackeys video: How to make 3D Games in Godot. The
video is not a tutorial, but a guide to common engine features like lighting, physics, materials,
animations, and more. For convenience, video link and its times stamps are below:

How to make 3D Games in Godot (video)

3:35 3D Space

6:13 Greyboxing

9:31 Terrain

10:01 Playing the Game

11:11 Character Controller

14:15 3D Physics

16:10 Graphics

17:44 3D Assets in 1 min

18:45 Assets in Godot

22:38 StandardMaterial3D

26:53 Scene Workflows

30:53 Collision

32:57 Replace Greybox

35:43 Animated Characters

38:33 Speed up Workflow

Common 3D Features

https://www.youtube.com/watch?v=ke5KpqcoiIU
https://www.youtube.com/watch?v=ke5KpqcoiIU&t=215s
https://www.youtube.com/watch?v=ke5KpqcoiIU&t=373s
https://www.youtube.com/watch?v=ke5KpqcoiIU&t=571s
https://www.youtube.com/watch?v=ke5KpqcoiIU&t=601s
https://www.youtube.com/watch?v=ke5KpqcoiIU&t=671s
https://www.youtube.com/watch?v=ke5KpqcoiIU&t=855s
https://www.youtube.com/watch?v=ke5KpqcoiIU&t=970s
https://www.youtube.com/watch?v=ke5KpqcoiIU&t=1064s
https://www.youtube.com/watch?v=ke5KpqcoiIU&t=1125s
https://www.youtube.com/watch?v=ke5KpqcoiIU&t=1358s
https://www.youtube.com/watch?v=ke5KpqcoiIU&t=1613s
https://www.youtube.com/watch?v=ke5KpqcoiIU&t=1853s
https://www.youtube.com/watch?v=ke5KpqcoiIU&t=1977s
https://www.youtube.com/watch?v=ke5KpqcoiIU&t=2143s
https://www.youtube.com/watch?v=ke5KpqcoiIU&t=2313s

39:24 Environment

42:00 Lighting

45:38 Tonemap

47:18 Camera

48:45 Render Quality

https://www.youtube.com/watch?v=ke5KpqcoiIU&t=2364s
https://www.youtube.com/watch?v=ke5KpqcoiIU&t=2520s
https://www.youtube.com/watch?v=ke5KpqcoiIU&t=2738s
https://www.youtube.com/watch?v=ke5KpqcoiIU&t=2838s
https://www.youtube.com/watch?v=ke5KpqcoiIU&t=2925s

