
Basic familiarity with nodes in Godot
XRRig
Controller Input
Ensure you have a ready LeftHand and RightHand script for input.

For each XRController3D node (VR hands), add an Area3D node as a child. You should get a
warning about the Area node needing a collision shape, so add a new CollisionShape3D node as
a child of the Area3D node. For my Shape type, I chose a new SphereShape3D and gave it a
radius of 0.1m. Do this for all XRController3D nodes if you are using pickup interactions.

Basic Grab

Prerequisites:

Setup for XR Rig

https://scil-wiki.su.edu/books/godot/page/getting-started-with-godot
https://scil-wiki.su.edu/books/godot/page/simple-xr-rig
https://scil-wiki.su.edu/books/godot/page/vr-controller-input-in-godot
https://scil-wiki.su.edu/uploads/images/gallery/2025-04/screenshot-2025-04-28-102007.png

In your "world" scene, add a RigidBody3D node to your scene and add a CollisionShape3D and
MeshInstance3D node as children, as well as any setup needed for those nodes. In the
RigidBody3D node, create a new script called Grippable.cs and ensure the script is attached.
Now, let's add some code:

Setup basic grabbing

using Godot;

using System;

public partial class SimpleGrab : RigidBody3D, IGrabbable

{

	Node3D parentNode;

 public override void _Ready()

 {

 parentNode = (Node3D)this.GetParent();

 }

 public void PickUp(Node3D receivedController)

	{

https://scil-wiki.su.edu/uploads/images/gallery/2025-04/screenshot-2025-04-28-102025.png

Let's review what's happening here:

The parentNode is a variable used to cache where we need to re-parent this object when
it is dropped, which is usually back to the world. In our _Ready method, we just get the
current parent.
The Pickup method and its reference to the controller doing the interaction is done here.
We freeze physics while we are holding this object and parent it to our controller. The
true parameter in Reparent is passed to keep the global transform before parenting so
the pickup looks like we are grabbing an intended point.
The Drop method does the reverse of of Pickup, except an added line that gives the
object velocity from the controller when the object is let go. There is an optional line if you
wish to use CallDeferred instead of SetAxisVelocity (for advanced users).

Assuming you have completed all necessary prerequisites, you should have a LeftHand.cs and a
RightHand.cs with some possible functionality. Here is additional code to add to each hand:

		Freeze = true;

		Reparent(receivedController, true);

	}

	public void Drop(Vector3 receivedVelocity)

	{

		Freeze = false;

		Reparent(parentNode);

		//CallDeferred("set_axis_velocity", receivedVelocity);

		SetAxisVelocity(receivedVelocity);

	}

}

Add functionality to our hand (each)

 Vector3 velocity;

 Vector3 previousPosition;

 Area3D area;

 Grippable grippable;

Let's review what this code achieves:

A variable, velocity, is added for when we need to let to drop an object and give it
velocity. The benefit is this calculation does not involve a physics node or other physics

 public override void _Ready()

 {

 area = GetNode<Area3D>("Area3D");

 }

 public override void _Process(double delta)

 {

 velocity = (Position - previousPosition) / (float)delta;

 previousPosition = Position;

 }

 public override void OnGripPressed()

 {

 var bodies = area.GetOverlappingBodies();

 foreach (var body in bodies)

 {

 if (body is Grippable _)

 {

 grippable = body as Grippable;

 grippable.PickUp(this);

 return;

 }

 }

 }

 public override void OnGripReleased()

 {

 if (grippable != null)

 {

 grippable.Drop(velocity);

 }

 grippable = null;

 }

calculations that are not needed. You may optionally add a boolean flag in the _Process
method if you do not wish to calculate velocity every frame except for when you are
actually holding holding something.
In OnGrippedPressed, we use our Area3D node to check all overlapping bodies. If one
of these bodies is a Grippable type, then we attempt to pick it up and return out of the
method.
For OnGrippedReleased, we do a check to see if we are actually holding a grippable
object and, if we are, we drop the object and pass along our hand's velocity. Finally, we
indicate we are no longer holding anything in this hand.

If you have reached this stage, go ahead and test functionality with both hands.

If you are looking to add advanced interactions like sliders and dials, I may recommend keeping
these methods for grabbing types, but add new classes that track the controller's movement
instead of parenting when picked up or dropped.

Testing

Where to go from here?

Revision #3
Created 28 April 2025 14:16:02 by Wes
Updated 5 May 2025 14:33:37 by Wes

