
Await/Async in Unity
Async/Await in C# Unity
Converting A Coroutine To An Async

Async/Await in C# Unity
Preface
The original content is from the author Santosh Parihar from Medium.com. It has been modified
and updated for use in this wiki.

Getting Started

Lets understand Synchronous Operations first:

In software development, synchronous operations refer to tasks that are executed in a sequential,
blocking manner. This means that one task is completed before the next one begins, and each
operation waits for the previous one to finish. In synchronous execution, the program’s flow is
linear, and tasks are processed one after the other. It’s like standing in a queue: each person must
wait for the one in front to finish before proceeding.

Unity’s Main Thread :

Unity operates primarily on a single thread known as the “main thread” or “game loop”. This main
thread is responsible for several critical tasks, including:

Input Handling, Game Logic Update,Physics Simulation, Rendering and Repeat.
The loop continues these steps continuously, maintaining the real-time nature of the
game.

Unity often requires asynchronous operations due to the following key reasons:

1. Preventing Main Thread Blocking:

In synchronous operations, if a task takes a long time to complete (like loading a large file
or making a network request), it can cause the main thread to become unresponsive. This
results in the game freezing or stuttering, leading to a poor user experience.
Asynchronous operations allow you to perform these time-consuming tasks in the
background, ensuring that the main thread remains free to handle other critical tasks like

This is an advanced topic! You should have an understanding of Object Oriented
Programming in C# as well as an understanding behind C# Delegates.

https://medium.com/@sonusprocks/async-await-in-c-unity-explained-in-easy-words-571ebb6a9369

rendering, input processing, and game logic.

2. Handling Concurrent Tasks:

Games often need to perform multiple tasks simultaneously, like loading assets,
processing AI behavior, and handling network communication. Asynchronous operations
enable you to manage these tasks concurrently without one task blocking the others.

3. Network Communication:

When making network requests, especially over the internet, the response time can vary.
Asynchronous operations allow the game to continue functioning while waiting for data
from the network, preventing the game from feeling sluggish.

4. Error Handling:

Asynchronous operations often offer better error handling. If something goes wrong
during a synchronous operation, it can disrupt the entire process and may not be easy to
recover from. With asynchronous operations, errors can be caught and handled more
gracefully, allowing the game to continue running without catastrophic failures.

Here’s a simplified explanation and different examples of
async/await for beginners :
To use async/await, you first need to declare your method as async . This tells the compiler that the
method can return an async Task object. You can then use the await keyword to wait for an
asynchronous operation to complete.

async Task HandleAsyncOperation()
{
 try
 {
 // Asynchronous operation
 await SomeAsyncTask();
 }
 catch (Exception e)
 {
 Debug.Log($"error : {e.Message}");
 }
}

Example 1
The following code loads an asset, creates a new object with the asset, and then moves the object
to a specific location:

Example 2

using System.Threading.Tasks;
using UnityEngine;

public class AsyncExample : MonoBehaviour
{
 async void Start()
 {
 Debug.Log("Start of the method");

 await SomeAsyncOperation();

 Debug.Log("After the async operation");
 }

 async Task SomeAsyncOperation()
 {
 await Task.Delay(2000); // Simulating a time-consuming operation
 }
}

 void Start()
 {
 SpawnPlayer();
 }

async void SpawnPlayer()
{

 GameObject player = await AssetDatabase.LoadAssetAsync("Assets/Player.asset");
 GameObject playerBody= new GameObject(playerBody);
 await playerBody.transform.position = new Vector3(1, 5, 4);

}

Imagine you’re a magician performing a series of magic tricks. Each trick requires some setup
time, and you want to perform them one after another without making the audience wait too long
between tricks.

Using async/await, you can perform multiple tricks concurrently and ensure a smooth flow of your
performance. Let’s see how it works:

using System;
using UnityEngine;
using System.Threading.Tasks;

public class Magician : MonoBehaviour
{
 public async Task PerformMagicShow()
 {
 Debug.Log("Preparing for the magic show...");

 Task trick1Task = PerformTrick("Card Trick");
 Task trick2Task = PerformTrick("Coin Trick");

 // While the tricks are being prepared, you can engage the audience
 Debug.Log("Engaging the audience with some jokes...");

 // Await the completion of each trick
 await trick1Task;
 Debug.Log("Card Trick performed!");

 await trick2Task;
 Debug.Log("Coin Trick performed!");

 Debug.Log("Magic show completed!");
 }

 private async Task PerformTrick(string trickName)
 {
 Debug.Log($"Preparing for {trickName}...");

 // Simulate the time it takes to set up the trick
 await Task.Delay(3000); // 3 seconds

 Debug.Log($"Performing {trickName}!");

In this example, the Magician class represents a magician performing a magic show. Each trick is
represented by the PerformTrick method, which is called with the name of the trick.

Inside the PerformMagicShow method, two tricks (Card Trick and Coin Trick) are initiated concurrently
using PerformTrick and stored in separate Task objects (trick1Task and trick2Task).

While the tricks are being prepared, you engage the audience with jokes, giving them an
entertaining experience during the setup phase.

By assigning PerformTrick("Card Trick") to the trick1Task variable, you are creating a Task object that
represents the asynchronous operation of performing card trick. However, at this point, the
PerformTrick("Card Trick") method will start executing, and the program will proceed to the next line
without waiting for the 3-second delay to complete.

The execution will continue to the line Task trick2Task = PerformTrick("Coin Trick"); , which starts the
PerformTrick("Coin Trick") method. Similarly, this method contains an asynchronous operation
simulated by Task.Delay(3000) . Here again, the program will start executing this method, but it
won't wait for the 3-second delay to finish.

The line await trick1Task; will pause the execution of the PerformMagicShow () method and wait
until the trick1Task is completed before moving on to the next line of code.

When you use the await keyword, it essentially tells the program to pause at that point and allow
other tasks to continue executing while it waits for the awaited task to complete. In this case, it will
wait for the trick1Task to finish.

Once the trick1Task is completed, the program will resume execution at the next line after the
await statement. In this code example, it will print "Card Trick performed!" to the console.

So, the await keyword ensures that the subsequent code is not executed until the awaited task (in
this case, trick1Task) has finished its execution.

 }

 public async Task StartMagic()
 {
 await PerformMagicShow();
 }

 public void Start()
 {
 StartMagic();
 }

 }

Then, using await , the program waits for each trick to complete before moving on to the next line.
Once a trick is completed, a corresponding message is printed to the console.

Finally, when all the tricks are finished, the program prints a completion message, indicating that
the magic show is complete.

This playful example demonstrates how async/await can be used to perform multiple tasks
concurrently, allowing you to keep the audience engaged while seamlessly transitioning between
different tricks during a magic show.

Unity’s main thread is single-threaded, meaning that all Unity-related operations, such as rendering
and updating the game, are handled on that thread. However, async/await can still be beneficial in
Unity for handling certain types of tasks, even if they don’t run on separate threads.

The key idea is that while the async operations themselves may not run on separate threads, they
still allow the Unity main thread to continue processing other tasks and remain responsive.

In summary, while Unity’s main thread is single-threaded, async/await can still be utilized in Unity
to handle async operations in a non-blocking manner, allowing the main thread to continue
processing other tasks while waiting for the completion of the async operations.

To solve the problem we will use Task Cancellation feature of c#, you can read more about it here :

https://learn.microsoft.com/en-us/dotnet/standard/parallel-programming/task-cancellation

Unity is single threaded. Coroutines are useful for executing methods over a number of
frames.
Async methods are useful for executing methods after a given task has finished.

When utilizing coroutines, a feature in Unity, they will automatically stop running as soon as
you stop the Unity editor or the game ends. However, when using threads, they can
continue running in the background even after stopping the Unity editor. To ensure proper
handling, it becomes necessary to manually stop the thread when stopping the Unity editor
to prevent any unintended background execution.

public class TestAsync : MonoBehaviour
{

 private CancellationTokenSource token;

 private void OnEnable()

https://learn.microsoft.com/en-us/dotnet/standard/parallel-programming/task-cancellation

 {
 token = new CancellationTokenSource();
 Debug.Log(" task , on enable");

 // Start the work in a separate task
 Task.Run(DoWork);
 }

 private void OnDisable()
 {
 Debug.Log(" task , on disable , task cancel");

 // Cancel the task when the script is disabled
 token.Cancel();
 }

 private async void DoWork()
 {
 Debug.Log(" task , do work");
 await Task.Run(() =>
 {
 for (int i = 0; i < 5; i++)
 {
 Debug.Log("Hello");
 if (token.IsCancellationRequested)
 {
 return;
 }
 }
 }, token.Token);

 if (token.IsCancellationRequested)
 {
 Debug.Log("task was cancelled.");
 return; // further code will not be executed
 }

 // Code to be executed after the task completes successfully
 Debug.Log("task completed successfully.");
 }

Hope you understood the concept.

}

Converting A Coroutine To
An Async
Preface
The original content is from the author Michael Quinn from Medium.com. It has been modified and
updated for use in this wiki.

About
Coroutines are amazing ways to sequence logic together over many frames. Asynchronous
programming, or async, allows the code to similarly be split over multiple frames, but allows for
multithreading which has the benefit of logic being concurrently executed instead of sequentially.

The Coroutine Way
I have a very simple example that rotates cubes for a certain amount of time.

This is an advanced topic! You should have an understanding of Object Oriented
Programming in C# as well as an understanding behind C# Delegates.

I could have translated the code below into code snippets, but I found it more important to
physically type what's needed for the sake of understanding.

https://medium.com/unity-coder-corner/unity-converting-a-coroutine-to-an-async-and-never-looking-back-b5a78f91049f

Image not found or type unknown

This script will do a loop over all the cubes and trigger a coroutine that will rotate them. Setting this
function to run when a button is pressed and we have the following effect.

Image not found or type unknown

The Async Way
To convert the current method we are going to swap IEnumerator to async and then change the
yield to an await task.

Image not found or type unknown

With the proper using statement, we can simplify the naming and finish with the following code.

Image not found or type unknown

Get ready for the results! They are … exactly the same.

Image not found or type unknown

Okay so where is the power in this? The benefits are immense. The very first we may be able to see
was that I had to add a return type when converting the function from a coroutine to an async
method. Coroutines don’t return values like that.

To get around this shortcoming, I’ve had to do crazy things like this before.

Image not found or type unknown

Ugh, yuck. Who wants to read that? With async, everything is far more readable and easier when it
comes to return values.

The strongest immediate benefit of async is the power of multithreading. Coroutines run on what is
called the main thread. The longer it takes the main thread to move, the more lag your
application will experience. Async, however, can run on threads besides the main thread. This
benefit from async can give a major benefit to an applications performance.

Multithreading is not totally noticeable in this example, but this next benefit is. Async has the
ability to run sequentially using the keyword await.

But if Coroutines are made for sequential logic, then how is this a benefit? Coroutines are made for
sequential logic, but they are not made for sequentially executing coroutines.

Now, there are ways to sequentially execute coroutines. The absolute simplest way would be to
have a StartCoroutine() function at the end of a coroutine. This chaining however, will lead to

very difficult code to unpick when it comes time to refactor. A cleaner way to handle this with
async methods is using await.

Our first step is to change the return type, from void to Task. Then we can use the await
functionality by making the original function also async.

Image not found or type unknown

Now when we test this logic, we will see the cubes only rotate after the one before it is finished.

Image not found or type unknown

Another benefit, that might convince you to never use coroutines again, is that with async, you can
make logic wait until a series of tasks have completed.

To demonstrate this, I’m going to create a simple array of colors, then have the button change
ONLY after all the cubes have finished moving.

Image not found or type unknown

Before we change this logic, let’s see what we have currently.

Image not found or type unknown

Okay, so now with async, we will be able to change the behavior around so that all the cubes will
rotate at the same time, but the button will still only change after they are all finished.

We are going to want to create a list of tasks that we can add to, then check to see if all those
tasks have finished before changing the color of the button.

Image not found or type unknown

The entire code will now look like the following.

Image not found or type unknown

Image not found or type unknown

That’s pretty cool right there.

Takeaway
This article has only scratched the surface of the power of asynchronous programming but it has
definitely convinced me to make the switch from coroutines to async.

