
C# and Visual Scripting
Simple XR Rig Setup
XR Interaction Toolkit Setup
XRIT Interactions
Building for PC in Unity
VR Keyboard in Unity
Unity URP Settings for Standalone VR
Unity Features

Lighting & Exposure Cheat Sheet
Unity Audio Mixer
Terrain Tool
Importing Animation

Await/Async in Unity

Async/Await in C# Unity
Converting A Coroutine To An Async

AR Basics in Unity

Unity

The following is a list of SCiL preferred guides on getting started with C# and Visual Scripting that
is focused on Unity (but still universal). These are specifically curated and are highly
recommended! Some other language experience, such as Python, is recommended but not
required.

This is a complete introduction to C# and also a great refresher on various topics. If you want to
get the most out of C# and starting out, this is a complete guide to the majority of topics you will
need. It does not include delegates and events, something special and unique to the C# language
but there is a recommendation on this page.

https://www.youtube.com/watch?v=k6kbUuMuhxw&list=PL23Revp-82LKjZisIn0uUFciNrkXBRjMp

Similar to Kodeco, without as many topics. This playlist comes from the infamous Brackeys.

https://www.youtube.com/playlist?list=PLPV2KyIb3jR4CtEelGPsmPzlvP7ISPYzR

It is important you have gone through the Complete C# Programming with Kodeco playlist above!

https://www.youtube.com/watch?v=VgwP1uXNnCw

This follows C# Delegates in Unity, so be sure to follow that one first.

C# and Visual Scripting
About

C# Programming

Complete C# Programming with Kodeco

Alternate: C# Programming with Brackeys

C# Delegates in Unity! - Intermediate Scripting Tutorial

C# Events in Unity - Intermediate Scripting Tutorial

https://www.youtube.com/watch?v=k6kbUuMuhxw&list=PL23Revp-82LKjZisIn0uUFciNrkXBRjMp
https://www.youtube.com/playlist?list=PLPV2KyIb3jR4CtEelGPsmPzlvP7ISPYzR
https://www.youtube.com/watch?v=VgwP1uXNnCw

https://www.youtube.com/watch?v=k4JlFxPcqlg&t

Build a complete game. I have done this playlist and it works well. You can use the latest
version of Unity.

https://www.youtube.com/playlist?list=PLrw9uFU6NhfPCiMfDLsL-ccDMCMJ0bMJk

This is a common question I'll get asked. This guide is VERY USEFUL if you come across Unity C#
code and need to translate into Unreal Blueprint code as well.

https://www.youtube.com/watch?v=waBRBKZaY9Q

Visual Scripting Programming
Visual scripting in Unity seems to work well and you can build most things you will need.
However, Unity's visual scripting is no where near the quality and power of Unreal's
Blueprints!

An introduction to Unity's Visual Scripting

How to Translate C# script to Visual Scripting Graph in Unity

https://www.youtube.com/watch?v=k4JlFxPcqlg&t
https://www.youtube.com/playlist?list=PLrw9uFU6NhfPCiMfDLsL-ccDMCMJ0bMJk
https://www.youtube.com/watch?v=waBRBKZaY9Q

This guide covers how to set up a simple or basic XR rig, similar to other guides on this wiki. There
are "prefabs" or a packaged object available for an entire player object that has everything we
need, but sometimes it's nice to start with the basics and add features manually as we need them.

This guide assumes you have been briefed on the basics of the Unity editor, such as the project
folder, inspector, hierarchy, scene, game tabs, etc.

Launch Unity Hub.

Click New project.

Under the templates, choose Universal 3D Core (URP).

Why URP?

Unlike the standard or built-in 3D pipeline for Unity, the universal rendering pipeline (URP)
gives scalability for different systems out of the box as well as node-based shader creation.

See more: https://docs.unity3d.com/Packages/com.unity.render-
pipelines.universal@17.0/manual/index.html

Give your project a name and choose a file destination under Project settings.

Uncheck Connect to Unity Cloud and Use Unity Version Control. You can connect to these
services later, if you wish.

Click Create project.

The project will be built. Take a few moments and get acquainted with the layout of the Unity
Editor. Take a particular look at the Project Window, where your assets will live. Check out the
URP Readme file. When you are ready, you may click the Remove Readme Assets button in the
Inspector. You can also delete the InputSystem_Actions file as we will get our input from the XR

Simple XR Rig Setup
Project Setup (Updated for Unity 6)

Project files can be large, so I recommend a fast connection external ssd.

https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/index.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/index.html

Interaction Toolkit.

Go to Edit > Project Settings. Click on XR Plugin Management on the left and install the XR
Plugin Management.

Check Open XR under Plug-in Providers.

If you get a message about enabling backends for the new input system, click yes. Unity will
restart. This switches Unity to use the new Input System (which is better and more scalable).

Click the yellow warning sign next to OpenXR. Click fix all in the upper right corner of the window
that appears. This may take a moment to process.

You'll notice not all of the warnings went away. What is left is adding controller support in
something called the Interaction Profile. Before you leave, sometimes it is good to come back here
to Project Validation to verify warnings are properly dealt with.

Navigate to the OpenXR tab under XR Plug-in Management on the left.

Enabling OpenXR

https://scil-wiki.su.edu/uploads/images/gallery/2023-11/sk0image.png

Under Interaction Profiles click the + button and add Oculus Touch Controller Profile. You
may add more support for other devices if you wish.

Close Project Settings window.

At the top, go to Window/Package Manager. Select Unity Registry on the left and scroll down
until you find XR Interaction Toolkit. Select it and the window should change to give you
descriptions and the ability to install. Click the Install button.

After a moment or two, a new tab within the window will appear called Samples. Click the tab and
under Starter Assets, click the Import button. After a moment, you will have a Samples folder
with Starter Assets inside your project.

Add the XR Interaction Toolkit (XRIT)

https://scil-wiki.su.edu/uploads/images/gallery/2024-04/screenshot-2024-04-09-095039.png

Switch back to the Scene tab. If you get a window that pops up about Interaction Layer 31
should be set to 'Teleport' for... then select Fix or Fix all.

Back in the scene tab, you should not have any cameras in your scene. Right click in the Hierarchy
window and select XR/XR Origin (VR).

This creates two objects; an XR Interaction Manager which is responsible for the core parts of XR
Interaction Toolkit, and an XR Orgin (VR) game object. If you select the XR Orgin (VR) game
object, reset its position and rotation to 0, 0, 0.

Feel free to browse these other samples but I caution you to not install them until you are
comfortable with Unity, VR, and the basics!

Create the XR Rig

https://scil-wiki.su.edu/uploads/images/gallery/2025-01/screenshot-2025-01-09-111718.png

Notice that this game object has an XR Origin component and an Input Action Manager component.
The Input Action Manager has input bindings configured from the starter assets we obtained. There
is also a child object called Camera Offset that is controlled by the XR Origin, and a Main Camera
as a child object of that. Feel free to browse these items but do not change their values until you
have adequately tested your project.

In Unity, press the Play button at the top-center and verify VR is working. If it is, proceed to the
next step. If it is not, check connections, headset, restart the editor, Steam/Meta Link, or even the
computer.

Because Unity has changed the way inputs are handled with XR Interaction Toolkit from the
previous version (v2), we will handle things a little differently than the past. We will be using in this
case, XR Direct Interactors to show our hands, but there are other options you can try in the future
as well as different configurations. This guide, again, is for a simple XR Rig.

This is a great moment to test your project in VR. Verify your headset is working
through the PC. If you have to turn on PC-VR with Steam or Meta Link, it is a good idea to
save and close your project, get VR up and running, and then reopen the project. This is the
same for any game engine you use.

Adding Controllers

https://scil-wiki.su.edu/uploads/images/gallery/2025-01/screenshot-2025-01-09-112738.png

Right click on the Camera Offset game object and go to XR/Direct Interactor. Change its name
to something like Left Direct Interactor since we will add another for bother controllers. Select
new game object and in the Inspector, add a new component called Tracked Pose Driver (Input
System).

DO NOT choose the one that is MISSING the (Input System) part otherwise you will have to
delete the component and add the correct one again.

https://scil-wiki.su.edu/uploads/images/gallery/2025-01/screenshot-2025-01-09-113828.png

Inside this new component, change the Position Input, Rotation Input, and Tracking State
Input values from Action to Reference buy selecting the vertical 3-dots icon and select Use
Reference.

This is the tricky part for some: Click the bulls-eye icon on each value and assign the correct
reference from the samples folder. Here is an example for Position: After you click the bulls-eye
icon, a window appears. Start to type "XRI Left/Pos" and you will filter the results for left-controller
position. Do this for rotation as well "XRI Left/Rot." For Tracking State Input, select the bulls-eye
and begin to type "XRI Left/Track" and you will get the correct reference.

If you were to test this for the left hand right now, the hand will probably work but you won't "see"
anything. For now, lets add a basic sphere for a visual for our hand. Right-click on the Direct
Interactor game object and add a 3D object/Sphere and a child. Change its scale to 0.2, 0.2,
0.2. Remove the Sphere Collider component from the sphere object (NOT from the Direct
Interactor).

Test in VR and you should have a left hand with a sphere. If everything works, repeat the process
above and use values for Right instead of Left. When you are finished your rig should look like this:

https://scil-wiki.su.edu/uploads/images/gallery/2025-01/screenshot-2025-01-09-114039.png
https://scil-wiki.su.edu/uploads/images/gallery/2025-01/screenshot-2025-01-09-114434.png

The next steps would be to add possibly a form of locomotion or interact with objects such as
picking them up.

You can also browse the complete XR Rig prefab from the samples folder in Samples/XR
Interaction Toolkit/x.x.x/Starter Assets/Prefabs/XR Origin (XR Rig) although This is an
advanced and very complete setup with features you may not need.

This tutorial is now complete.

DON'T FORGET TO TEST IN VR!

Where to go from here?

https://scil-wiki.su.edu/uploads/images/gallery/2025-01/screenshot-2025-01-09-114915.png

Navigate to Window > Package Manager.

In Package Manager, click the packages drop down in the upper left (next to the + sign) and
change it to Unity Registry.

Scroll down to XR Interaction Toolkit and click Install.

Once XR Interaction Toolkit is installed, click continue. (If it gives you another prompt, accept it and
let Unity restart.)

Click Samples. Import the Starter Assets.

In the Project window, a Samples folder has been added. Click Samples > XR Interaction Toolkit >
[Version] > Starter Assets. For each of the XRI presets, click Add to... at the top of the inspector.

In Edit > Project Settings select Preset Manager from the left.

XR Interaction Toolkit Setup
Setup

This guide is for XR Interaction Toolkit version 2. If you are using a newer version,
such as v3, OR you are using Unity 6 or higher, this guide is deprecated!

https://scil-wiki.su.edu/uploads/images/gallery/2023-11/97fimage.png
https://scil-wiki.su.edu/uploads/images/gallery/2023-11/i2qimage.png

In the two boxes where it says XRI Default Right/Left Controller (it should be the third section
down) type "right" and "left" for the corresponding box.

If you have a current XRRig, make a note of your XRRig position and rotation values and then
delete your existing XR Rig.

Right click in the hierarchy and click XR > XR Origin (Action Based).

Select the XR Origin in the hierarchy and set its Tracking Origin Mode to "Floor" in the inspector
window. *WARNING (see below)

Open the XR Origin hierarchy and select the "left controller" object. Delete it. Then select the
"right controller" object and delete that as well. (We are going to build our own versions of these)

As of January, 2024, there may be a bug with setting the Tracking Mode to floor with the XR
Interaction Toolkit. Leave the dropdown as its default state (varies) will still project most
modern headsets to the floor by default.

https://scil-wiki.su.edu/uploads/images/gallery/2023-11/gpvimage.png

Now we have a choice: 1) we can either set up a direct interactor that will let us pick up objects
in the world, or 2) we can set up a ray interactor that will let us set up teleport locomotion.

In this tutorial, we will add both of these interactors. You can start with either one.

Decide which hand will be used for your direct interactor (for picking up world objects) and which
hand will be used for your ray interactor (for teleport locomotion). For the purposes of this
tutorial, you will want these functions assigned to different hands.

Right click on the Camera offset (within the XR Origin) in the hierarchy and choose XR > Ray
Interactor (Action-Based).

This will add a Ray Interactor to the rig. You can rename this in the inspector. Rename it to "R Ray
interactor" to show that this will be assigned to the right hand (or "L Ray Interactor" as the case
may be).

Make sure the R Ray Interactor object is selected.

In the header of the XR Controller (Action-based) component, click the preset icon. This is the
small icon on the right side of the component header between the question mark icon and the icon
with three dots.

A window will appear. Choose either the left or right preset as appropriate.

Setting Up a Ray Interactor (Teleport Locomotion)

https://scil-wiki.su.edu/uploads/images/gallery/2023-11/5qqscreenshot-2023-08-28-165520.png

Right click in the hierarchy and go to XR > Locomotion System (Action-Based).

If your XR Origin is not set, drag your XR Origin in.

Right click in the hierarchy and go to XR > Teleportation Area. This sets the area that can be
teleported in- resize and position it to your liking. Multiple teleportation areas can be active at
once. When positioned, turn off the mesh renderer to make it invisible.

Right click on the Camera offset (within the XR Origin) in the hierarchy and choose XR > Direct
Interactor (Action-Based).

This will add a Direct Interactor to the rig. You can rename this in the inspector. Rename it to "R
Direct interactor" to show that this will be assigned to the right hand (or "L Direct Interactor" as the
case may be).

Make sure the L Direct Interactor object is selected.

In the header of the XR Controller (Action-based) component, click the preset icon. This is the
small icon on the right side of the component header between the question mark icon and the icon
with three dots.

A window will appear. Choose either the left or right preset as appropriate.

Add a Teleport Area

Setting Up a Direct Interactor (Picking Up World Objects)

https://scil-wiki.su.edu/uploads/images/gallery/2023-11/uwlimage.png

Add visual objects for the hands (if desired). One way is to add a sphere as a child object of your
interactor. Scale appropriately and REMOVE the collider component.

For this tutorial we will make a grabbable cube.

Right-click in the hierarchy and create a 3D cube.

On the cube, add the XR Grab Interactable component.

Now, when you test your scene in VR, you should be able to pick up the cube with whichever hand
is set up as a direct interactor.

Add a Grabbable Object

https://scil-wiki.su.edu/uploads/images/gallery/2023-11/qfwscreenshot-2023-08-28-165520.png

Complete guide to XR Interaction Toolkit: https://www.youtube.com/playlist?list=PLpEoiloH-4eP-
OKItF8XNJ8y8e1asOJud

Same as above, older, but has lots of common features such as two hand grab, drawers, levers,
etc: https://www.youtube.com/playlist?list=PLrk7hDwk64-a_gf7mBBduQb3PEBYnG4fU

Full body in VR: https://www.youtube.com/playlist?list=PLrk7hDwk64-ZRB5lz-xJhgH7Lp6MIRcHJ

XRIT Interactions
Valem

These guides is for XR Interaction Toolkit version 2 and/or versions prior to Unity
6. If you are using a newer version, such as v3, OR you are using Unity 6 or
higher, this guide is deprecated!

Often Valem's tutorials include heavy use of C#

https://www.youtube.com/playlist?list=PLpEoiloH-4eP-OKItF8XNJ8y8e1asOJud
https://www.youtube.com/playlist?list=PLpEoiloH-4eP-OKItF8XNJ8y8e1asOJud
https://www.youtube.com/playlist?list=PLrk7hDwk64-a_gf7mBBduQb3PEBYnG4fU
https://www.youtube.com/playlist?list=PLrk7hDwk64-ZRB5lz-xJhgH7Lp6MIRcHJ

Once you have a project that you want to build, you can follow this tutorial. This guide assumes
you've configured your project for OpenXR. It is applicable to most PC VR systems that support
OpenXR, including the following systems:

Varjo Aero
Valve Index
Meta headsets
HTC Headsets
Windows Mixed Reality

You should use a different build process for other VR systems and/or projects that do
not use OpenXR.

Building a PC VR Project in Unity

In Unity, go to File > Build Settings.

Verify that the platform is set to Windows, Mac, Linux.

In the lower part of the dialogue window, click on "Player Settings..."

In the window that opens, look in the left menu. Under "XR Plug-In Management" verify OpenXR is
checked.

Underneath XR Plug-in Management there will be some items such as OpenXR, Project
Validation, etc. Select OpenXR on the right. You will see a small window with Interaction
Profiles. You may have already added the Oculus Touch Controller Profile.

Choose whichever controller is applicable to your targeted system. (You can add more than one
profile to support multiple hardware systems)

Index Controllers: choose "Valve Index Controller Profile"
Rift S Controllers: choose "Oculus Touch Controller Profile"
HTC Vive Controllers: choose "HTC Vive Controller Profile"
HP Reverb G2 Controllers: choose Microsoft Motion Controller Profile"

Note: it is possible to use controllers from one manufacturer with a headset from another. For
example, you might choose "Valve Index Controller Profile" if you are using the Valve Index
controllers with any other compatible headset such as the Varjo Aero, HTC Vive, etc.

Go back to the Build Settings window, which should still be open (if not, open it again).

Building for PC in Unity

Verify that the scenes you want to build are shown in the "Scenes to Build" window. If no scenes
appear, you can drag scene files from the Project window into this box.

In the "Build Settings" window, click the "Build" button in the lower right.

In the dialogue window that opens, navigate to a location where you want to build your scene. It is
recommended to make a "Builds" folder within your Unity project, but this isn't necessary.

Click "Select Folder" and the project will build to that pointed directory.

To run your build, in your OS navigate to the folder where you built the project and double click the
.exe file named for your project.

You can build a project on a computer other than the one you plan to run it on. Just make sure you
run your build on the appropriate hardware per your build settings.

Considerations

Under Project Settings/Player/Resolution and Presentation, consider different modes such as
Fullscreen or Windowed. Also note at the very top the is a location where you can add a Default
Icon as well as Company Name and Product Name

Optimizing Your Build For VR

Though the process above will result in a working build, there are some extra settings you can use
to optimize your project for VR applications. These setting are all available in the "Project Settings"
window on the left side.

Player > Other Settings > Color Space: Set this to "Linear" to better support the built-in
color profiles of VR headsets
Quality > Rendering > Anti-Aliasing: Set this to "4X" to optimize edge smoothing for VR
performance
Quality: At the top, choose "High" to set a collection of settings in a manner that optimizes
performance for VR

Although different SDKs offer built-in keyboards, most don't offer cross-platform support. Below is
an updated version of a VR friendly keyboard that has been modified from a now inactive blogger
"Tales from the Rift." I have an included an updated version of their package including
TextMeshPro elements.

The blog post instructions are still valid.

Download HERE -
https://drive.google.com/file/d/1AoK9kyOT2Kru0hJb4C0DA4ho_fes2Skc/view?usp=drive_l

ink

Hello Virtual World

I’ve received a few emails about inputting text in VR, specifically around Unity’s Input Field.

Firstly, bugs, Input Fields rendered in world-space have several known bugs with displaying the
caret in the wrong position. I’m not sure why Unity has not resolved these yet.

Secondly, conceptually text input in VR is obviously not going to be do-able with a physical
keyboard, so you need a virtual input panel controllable by either a joystick input device and/or a
virtual pointer. At this time though, Unity only supports input panels for mobile builds with a touch
screen (iOS/Android) which are rendered in screen-space. Unfortunately Unity has no world-space
keyboard listed on their roadmap.

In this blog, I’ll show you how to create a canvas world-space keyboard for VR using look/gaze
based control.

Watch the video below, when the keyboard is displayed the user can look at the keyboard button
they want to trigger and select it with a physical button (Space on the PC physical keyboard, or X
on the X-Box controller, or GearVR short-press button).

https://player.vimeo.com/video/137138875

VR Keyboard in Unity

VR Canvas Keyboard

https://drive.google.com/file/d/1AoK9kyOT2Kru0hJb4C0DA4ho_fes2Skc/view?usp=drive_link
https://drive.google.com/file/d/1AoK9kyOT2Kru0hJb4C0DA4ho_fes2Skc/view?usp=drive_link
http://unity3d.com/search?refinement=issues&gq=caret
https://player.vimeo.com/video/137138875

It works well enough when you only have a small amount of input, such as getting the users name
before they join a game, but I’d hate to use it in a vr chat scenario!

For those in a rush, here is how you can add a keyboard to your VR application:

1. Download the .unitypackage and load it into your project.

2. Create your text panel for input. To keep it simple, create a UI Button, and a canvas will
automatically be created. Set that canvas to be world space, then scale and position it in the
scene.
Note: We’ll use a standard text button because of the bugs with Input Fields.

CanvasButton

3. Add an XR rig with an input mechanism, such as a ray interactor from the XR Interaction Toolkit.

Note: You can use an alternative input module, or even the standard touch input module. Whatever
you like!

Gaze Event System

4. Create another canvas game object, also set in world-space which be the anchor for our actual
keyboard. By default these are huge, so set it’s scale to something meaningful like
(0.002,0.002,0.002):

Canvas Keyboard Anchor

5. Lets wire up the click event on your button to open the keyboard on that canvas anchor.

Drag on the OpenCanvasKeyboard script to the button. And assign your Canvas from previous step
4 to the canvas property. Then assign the Text game object child to the Text attribute.

Finally, add an OnClick event handler to open the keyboard. Press + to add a handler, drag the
button itself onto the Name (Object), and then in the drop down choose OpenCanvasKeyboard ->
OpenKeyboard

OpenKeyboard

That’s it. Now hit run. When you look towards the button and press SPACE the keyboard will display
(you may need to rotate your canvas) and you should be able to type and see text change on the
button.

Hello Virtual World

Quick Start

https://drive.google.com/file/d/1AoK9kyOT2Kru0hJb4C0DA4ho_fes2Skc/view?usp=drive_link
http://talesfromtherift.com/wp-content/uploads/2015/09/CanvasButton.png
http://talesfromtherift.com/wp-content/uploads/2015/09/eventsystem.png
http://talesfromtherift.com/wp-content/uploads/2015/09/canvasKeyboard.png
http://talesfromtherift.com/wp-content/uploads/2015/09/OpenKeyboard.png
http://talesfromtherift.com/wp-content/uploads/2015/09/hello.png

When you change scenes the keyboard is automatically destroyed, or if you want to manually close
the keyboard call: CanvasKeyboard.Close();

Since Unity 4.6 and 5, Unity has introduced it’s new UI system based on a 2d flat canvas that can
be rendered to either screen or world-space. It includes all the dynamic sizing you would expect of
a modern UI system. My keyboard is created out of UI buttons laid onto several panels, that are
then attached to a canvas.

One of the best ways to create the keyboard is to initially lay it out using screen-space. Then you
can more easily see how it scales.

If you see the screen shot below, I’ve used the Canvas Scaler to scale with screen size and used
a reference pixel resolution of 1024×768, but I actually only care about the width (see how I’ve set
Match slider to be width). Now now matter how wide the canvas scales it will always be 1024
reference pixels. The important part (which is not shown below) is that the panel
“CanvasKeyboard” attached to the canvas is set to a width and height of 1024 x 400. So now we
have a rectangular panel that scales maintaining it’s aspect ratio.

Canvas Keyboard Screen Space

Important Note: If you are in VR Supported mode, and hit run, no screen space UI is
displayed by design, as screen space UI doesn’t make sense in VR. So when you are
designing and testing a keyboard (or menu, or whatever) turn off VR Supported mode,
and use the standard event system for mouse input.

There are many styles of keyboard, from an mobile device style with multiple panels, or to a single
panel, or to funky round layouts (which no doubt work better in VR as they have less movement):

I have chosen a standard mobile input style keyboard. I did this because our poor VR users are
already dealing with a lot to learn about such a new environment, that I wanted them to see a
keyboard they recognize and are comfortable with – even if it is not as efficient as it could be. (I
like think about the lesson Apple learnt trying to introduce handwriting recognition with the Apple
Newton – when the iPhone was launched they kept their keyboard very standard!).

Laying out rows of buttons is a perfect match for combing the Canvas VerticalLayoutGroup (rows)
and then each row using a HorizontalLayoutGroup (columns). I didn’t use a grid layout because I
wanted to stagger the buttons like a physical keyboard. I also wanted to have some different
widths on keys such as SPACE and SHIFT. I can enforce the row heights by attaching a
LayoutElement to each key and setting the Min Height property.

Unity Canvas

http://talesfromtherift.com/wp-content/uploads/2015/08/CanvasKeyboard_ScreenSpace.png

I did not use any padding between the keyboard buttons (even though it looks like it) because it
made the keyboard a lot harder to use when there was a chance you were looking in between
buttons. So I faked it. I included space around the button background image in standard
(unpressed) mode, and removed the padding in the high (pressed) mode. That way as you look at a
button, it grows giving the illusion it has activated. Here are the background image:

keyboard background images

To use the keyboard, simply create a Canvas, drag the CanvasKeyboard prefab onto it as a child,
and set the inputObject reference for the input object you want to edit. (add the Gaze/Look based
VR input system , or use the mouse). Done!

A typical Canvas in world space looks like this:

canvas world space

Create the default canvas is MASSIVE. So for VR the scale x,y,z will be something
like 0.002,0.002,0.002.

I am anticipating several keyboard layouts would be available (eg: Alphabetical, Numeric, URL,
etc), so I’ve created a generic CanvasKeyboard object, and then specific Keyboard layouts below
that, such as CanvasKeyboardASCII.

So each key is a button, and when it’s OnClick occurs
it calls CanvasKeyboardASCII.OnKeyDown(this). The CanvasKeyboardASCII then reads the key
value from the name of the game object. Some keys it handles itself (such as close, or switching
the panels), otherwise it sends the keypress up to the CanvasKeyboard.SendKeyString(). The role
of the CanvasKeyboard class it to then set the text on the currently active game object or UI
element. It does this by using reflection to see if the target object has a text property and if so
updating it, otherwise it falls back to setting the target game objects name.

Pretty simple really!

Dragging on prefabs is all well and nice if you have only one field to edit, but what if you have
multiple? We need an API!

Keyboard key events

CanvasKeyboard API

http://talesfromtherift.com/wp-content/uploads/2015/09/buttons.png
http://talesfromtherift.com/vr-gaze-input/
http://talesfromtherift.com/vr-gaze-input/
http://talesfromtherift.com/wp-content/uploads/2015/08/canvas_ws.png

Unity has an excellent mobile keyboard accessible via the TouchScreenKeyboard API. I really like
the simplicity of that for keyboard management, so I created a very similiar one for my
CanvasKeyboard. That makes it a fairly straight forward transition if you already use the
TouchScreenKeyboard.

They Canvas Keyboard can be opened and closed via static functions:

Open the keyboard and parent it to a canvas. You should create your canvas as previously, and
pass a reference to it here. Also add your input object that you want to keyboard to set text of. You
can only have one canvas keyboard open, so if you already have one opened it will be closed.

Close a keyboard if it is open.

Check if a keyboard is currently opened (the user may have closed it with the close button).

Here is the code for managing it:

CanvasKeyboard.cs

CanvasKeyboard Open(Canvas canvas, GameObject inputObject = null, CanvasKeyboardType keyboardType = CanvasKeyboardType.ASCIICapable)

void Close()

bool IsOpen

 public class CanvasKeyboard : MonoBehaviour
 {
 public enum CanvasKeyboardType
 {
 ASCIICapable
 }

 public static CanvasKeyboard Open(Canvas canvas, GameObject inputObject = null, CanvasKeyboardType keyboardType = CanvasKeyboardType.ASCIICapable)
 {
 Close();
 CanvasKeyboard keyboard = Instantiate<CanvasKeyboard>(Resources.Load<CanvasKeyboard>("CanvasKeyboard"));
 keyboard.transform.SetParent(canvas.transform, false);
 keyboard.inputObject = inputObject;
 return keyboard;
 }

 public static void Close()
 {
 CanvasKeyboard[] kbs = GameObject.FindObjectsOfType<CanvasKeyboard>();
 foreach (CanvasKeyboard kb in kbs)
 {
 kb.CloseKeyboard();

http://docs.unity3d.com/ScriptReference/TouchScreenKeyboard.html

 }
 }

 public static bool IsOpen
 {
 get
 {
 return GameObject.FindObjectsOfType<CanvasKeyboard>().Length != 0;
 }
 }
 }

The following are settings came from a Unity forum but seem to work well. These are for
standalone settings!

Switching your quality level can be done in Edit/Project Settings/Quality. I would recommend
switching to the Performant setting and then using below as a guide for your URP asset.

Edit your Universal Render Pipeline Asset (usually in Assets/Settings) to below as a guide.

Unity URP Settings for
Standalone VR

A reminder is you can find your Lighting Setting under Window/Rendering/Lighting. Create a
new Lighting Settings Asset if you don't already have one and switch LightMapper from
Progressive CPU to Progressive GPU.

Remember to assign ALL NON-MOVING OBJECTS as STATIC and use Baked Lighting!

https://scil-wiki.su.edu/uploads/images/gallery/2024-04/urpsettings.png

Unity Features

Unity Features

Lighting & Exposure Cheat
Sheet

https://scil-wiki.su.edu/uploads/images/gallery/2023-11/upload-2021-1-25-11-4-39.png

Unity Features

Here are two great resources for using Unity's Audio Mixer, which is great for adding post effects
for environments. The first is Unity's documentation, which gets frequently updated, and the other
a great tutorial from the internet with detail on it's full use.

Unity - Manual: Audio Mixer

Audio Tutorial for Unity: The Audio Mixer

Unity Audio Mixer

https://docs.unity3d.com/Manual/AudioMixer.html
https://www.kodeco.com/532-audio-tutorial-for-unity-the-audio-mixer

Unity Features

Right click in the Hierarchy and navigate to 3D Object > Terrain.

There are several options under the Terrain component.

Create Neighbor Terrains lets you create more terrain planes. If Fill Heightmap Using Neighbor
is selected it will base the new plane on the ones adjacent to it. If Fill Heightmap Address Mode is
set to clamp, it will try to interpolate heights while mirror will simply mirror the terrain across the
axis. Just click in a highlighted square to create a new plane.

The Paint Terrain tool allows you to alter the plane's mesh.

Terrain Tool

Create Neighbor Terrains

Paint Terrain

https://scil-wiki.su.edu/uploads/images/gallery/2023-11/yb0image.png

Raise or Lower Terrain lets you adjust the height of the mesh, giving the appearance of hills and
mountains. Different brushes achieve different effects. The brush size controls the amount of
ground you change at once while the opacity controls how fast you change it. If you're noticing
you're having trouble controlling your brush, try turning down the opacity.

Paint Holes allows you to paint holes in your mesh.

Paint Texture allows you to edit the material of the plane.

Set Height will use the height set in Height and adjust all levels painted to that height. This is
good for creating planes at uniform elevations.

Smooth Height allows you to smooth rugged edges. This is good for creating slopes and hills.

Stamp Terrain lets you place terrain elements one by one based on the chosen brush. Selecting
subtract will instead remove terrain in the shape of the brush.

In order to paint trees, you need to select a prefab to use for the tree(s). You will see a box labeled
"Trees". Under this, there is a button called "Edit Trees...". Click that and click Add Tree. In Tree
Prefab assign a prefab to use. When you go to paint, this is what will be painted. This tutorial will
use the Free Trees package from the Unity Asset Store, located here.

Paint Trees

https://assetstore.unity.com/packages/3d/vegetation/trees/free-trees-103208#description

You can add multiple trees to the registry for easy switching.

*Note: The prefab can be of anything- if you need a massive amount of the same prefab in an
environment, consider placing them as 'trees'.

Select a tree to begin painting trees onto your mesh. Brush size changes the size of the area you
will place trees in at one time and density effects how many trees appear within that area. There
are some options to add some simple variety to your trees, such as height and width.

Clicking Mass Place Trees will automatically add trees over the entirety of your terrain using a
mix of the tree models you have loaded. You can change the amount of trees you'd like to spawn
based on how populated you want your environment to be.

Paint Details operates similarly to Paint Trees, however there is no option to mass place
details.

You can also add a grass textures here so that you can paint unique grass onto your mesh. It
includes a level of color variation to help diversify your grass automatically.

Paint Details

https://scil-wiki.su.edu/uploads/images/gallery/2023-11/xtdimage.png

Unity Features

In your Project tab, right click and select create > timeline.

Import your animation to the Project tab. Select it (or the animation itself if included in an fbx
package, denoted by a triangle icon) and select edit.

If the model you are using is humanoid, select Rig and change Animation Type to Humanoid.
Click Apply.

Import your model to the Project tab. Select it and select edit.

Importing Animation

If using a read-only animation:

https://scil-wiki.su.edu/uploads/images/gallery/2023-11/exhimage.png
https://scil-wiki.su.edu/uploads/images/gallery/2023-11/783image.png

On the model, if the model you are using is humanoid, select Rig and change Animation Type to
Humanoid. Click Apply.

In the materials tab, click extract textures and select the same folder where the character is
stored in the Unity project. Click extract materials and do the same. The blank "remapped
materials" list should now populate with the correct materials.

Drag your model into your scene.

Create an empty object in the scene and name it "Timeline".

Add the component playable director to "Timeline".

In the Project window, right click and go to create > timeline. Name it "Sequence".

Click on "Timeline" in the hierarchy and change the Playable Director's Playable to "Sequence".

https://scil-wiki.su.edu/uploads/images/gallery/2023-11/lx0image.png

Go to window > sequencing > timeline to show the timeline window. You may want to drag this
somewhere into your setup.

Right click in the empty left area of the timeline window and add an animation track.

Select or drag the model you want to animate to the blank box currently labelled "None
(Animator)". This will make it so any animation placed on the section of the timeline applies to that
model.

Drag the animation from earlier into the timeline.

Press the play button in the timeline to watch it play in the editor.

https://scil-wiki.su.edu/uploads/images/gallery/2023-11/gbzimage.png
https://scil-wiki.su.edu/uploads/images/gallery/2023-11/zaiimage.png

*Note: if the animation moves your model, select the animation in the timeline and change the Clip
Transform Offsets to match where you want your model to be.

Await/Async in Unity

Await/Async in Unity

The original content is from the author Santosh Parihar from Medium.com. It has been modified
and updated for use in this wiki.

Lets understand Synchronous Operations first:

In software development, synchronous operations refer to tasks that are executed in a sequential,
blocking manner. This means that one task is completed before the next one begins, and each
operation waits for the previous one to finish. In synchronous execution, the program’s flow is
linear, and tasks are processed one after the other. It’s like standing in a queue: each person must
wait for the one in front to finish before proceeding.

Unity’s Main Thread :

Unity operates primarily on a single thread known as the “main thread” or “game loop”. This main
thread is responsible for several critical tasks, including:

Input Handling, Game Logic Update,Physics Simulation, Rendering and Repeat.
The loop continues these steps continuously, maintaining the real-time nature of the
game.

Unity often requires asynchronous operations due to the following key reasons:

1. Preventing Main Thread Blocking:

In synchronous operations, if a task takes a long time to complete (like loading a large file
or making a network request), it can cause the main thread to become unresponsive. This
results in the game freezing or stuttering, leading to a poor user experience.

Async/Await in C# Unity
Preface

This is an advanced topic! You should have an understanding of Object Oriented
Programming in C# as well as an understanding behind C# Delegates.

Getting Started

https://medium.com/@sonusprocks/async-await-in-c-unity-explained-in-easy-words-571ebb6a9369

Asynchronous operations allow you to perform these time-consuming tasks in the
background, ensuring that the main thread remains free to handle other critical tasks like
rendering, input processing, and game logic.

2. Handling Concurrent Tasks:

Games often need to perform multiple tasks simultaneously, like loading assets,
processing AI behavior, and handling network communication. Asynchronous operations
enable you to manage these tasks concurrently without one task blocking the others.

3. Network Communication:

When making network requests, especially over the internet, the response time can vary.
Asynchronous operations allow the game to continue functioning while waiting for data
from the network, preventing the game from feeling sluggish.

4. Error Handling:

Asynchronous operations often offer better error handling. If something goes wrong
during a synchronous operation, it can disrupt the entire process and may not be easy to
recover from. With asynchronous operations, errors can be caught and handled more
gracefully, allowing the game to continue running without catastrophic failures.

To use async/await, you first need to declare your method as async . This tells the compiler that the
method can return an async Task object. You can then use the await keyword to wait for an
asynchronous operation to complete.

async Task HandleAsyncOperation()
{
 try
 {
 // Asynchronous operation
 await SomeAsyncTask();
 }
 catch (Exception e)
 {
 Debug.Log($"error : {e.Message}");
 }
}

Here’s a simplified explanation and different examples of
async/await for beginners :

The following code loads an asset, creates a new object with the asset, and then moves the object
to a specific location:

using System.Threading.Tasks;
using UnityEngine;

public class AsyncExample : MonoBehaviour
{
 async void Start()
 {
 Debug.Log("Start of the method");

 await SomeAsyncOperation();

 Debug.Log("After the async operation");
 }

 async Task SomeAsyncOperation()
 {
 await Task.Delay(2000); // Simulating a time-consuming operation
 }
}

Example 1

 void Start()
 {
 SpawnPlayer();
 }

async void SpawnPlayer()
{

 GameObject player = await AssetDatabase.LoadAssetAsync("Assets/Player.asset");
 GameObject playerBody= new GameObject(playerBody);
 await playerBody.transform.position = new Vector3(1, 5, 4);

}

Example 2

Imagine you’re a magician performing a series of magic tricks. Each trick requires some setup
time, and you want to perform them one after another without making the audience wait too long
between tricks.

Using async/await, you can perform multiple tricks concurrently and ensure a smooth flow of your
performance. Let’s see how it works:

using System;
using UnityEngine;
using System.Threading.Tasks;

public class Magician : MonoBehaviour
{
 public async Task PerformMagicShow()
 {
 Debug.Log("Preparing for the magic show...");

 Task trick1Task = PerformTrick("Card Trick");
 Task trick2Task = PerformTrick("Coin Trick");

 // While the tricks are being prepared, you can engage the audience
 Debug.Log("Engaging the audience with some jokes...");

 // Await the completion of each trick
 await trick1Task;
 Debug.Log("Card Trick performed!");

 await trick2Task;
 Debug.Log("Coin Trick performed!");

 Debug.Log("Magic show completed!");
 }

 private async Task PerformTrick(string trickName)
 {
 Debug.Log($"Preparing for {trickName}...");

 // Simulate the time it takes to set up the trick
 await Task.Delay(3000); // 3 seconds

 Debug.Log($"Performing {trickName}!");

In this example, the Magician class represents a magician performing a magic show. Each trick is
represented by the PerformTrick method, which is called with the name of the trick.

Inside the PerformMagicShow method, two tricks (Card Trick and Coin Trick) are initiated concurrently
using PerformTrick and stored in separate Task objects (trick1Task and trick2Task).

While the tricks are being prepared, you engage the audience with jokes, giving them an
entertaining experience during the setup phase.

By assigning PerformTrick("Card Trick") to the trick1Task variable, you are creating a Task object that
represents the asynchronous operation of performing card trick. However, at this point, the
PerformTrick("Card Trick") method will start executing, and the program will proceed to the next line
without waiting for the 3-second delay to complete.

The execution will continue to the line Task trick2Task = PerformTrick("Coin Trick"); , which starts the
PerformTrick("Coin Trick") method. Similarly, this method contains an asynchronous operation
simulated by Task.Delay(3000) . Here again, the program will start executing this method, but it
won't wait for the 3-second delay to finish.

The line await trick1Task; will pause the execution of the PerformMagicShow () method and wait
until the trick1Task is completed before moving on to the next line of code.

When you use the await keyword, it essentially tells the program to pause at that point and allow
other tasks to continue executing while it waits for the awaited task to complete. In this case, it will
wait for the trick1Task to finish.

Once the trick1Task is completed, the program will resume execution at the next line after the
await statement. In this code example, it will print "Card Trick performed!" to the console.

So, the await keyword ensures that the subsequent code is not executed until the awaited task (in
this case, trick1Task) has finished its execution.

 }

 public async Task StartMagic()
 {
 await PerformMagicShow();
 }

 public void Start()
 {
 StartMagic();
 }

 }

Then, using await , the program waits for each trick to complete before moving on to the next line.
Once a trick is completed, a corresponding message is printed to the console.

Finally, when all the tricks are finished, the program prints a completion message, indicating that
the magic show is complete.

This playful example demonstrates how async/await can be used to perform multiple tasks
concurrently, allowing you to keep the audience engaged while seamlessly transitioning between
different tricks during a magic show.

Unity’s main thread is single-threaded, meaning that all Unity-related operations, such as rendering
and updating the game, are handled on that thread. However, async/await can still be beneficial in
Unity for handling certain types of tasks, even if they don’t run on separate threads.

The key idea is that while the async operations themselves may not run on separate threads, they
still allow the Unity main thread to continue processing other tasks and remain responsive.

In summary, while Unity’s main thread is single-threaded, async/await can still be utilized in Unity
to handle async operations in a non-blocking manner, allowing the main thread to continue
processing other tasks while waiting for the completion of the async operations.

To solve the problem we will use Task Cancellation feature of c#, you can read more about it here :

https://learn.microsoft.com/en-us/dotnet/standard/parallel-programming/task-cancellation

Unity is single threaded. Coroutines are useful for executing methods over a number of
frames.
Async methods are useful for executing methods after a given task has finished.

When utilizing coroutines, a feature in Unity, they will automatically stop running as soon as
you stop the Unity editor or the game ends. However, when using threads, they can
continue running in the background even after stopping the Unity editor. To ensure proper
handling, it becomes necessary to manually stop the thread when stopping the Unity editor
to prevent any unintended background execution.

public class TestAsync : MonoBehaviour
{

 private CancellationTokenSource token;

 private void OnEnable()

https://learn.microsoft.com/en-us/dotnet/standard/parallel-programming/task-cancellation

 {
 token = new CancellationTokenSource();
 Debug.Log(" task , on enable");

 // Start the work in a separate task
 Task.Run(DoWork);
 }

 private void OnDisable()
 {
 Debug.Log(" task , on disable , task cancel");

 // Cancel the task when the script is disabled
 token.Cancel();
 }

 private async void DoWork()
 {
 Debug.Log(" task , do work");
 await Task.Run(() =>
 {
 for (int i = 0; i < 5; i++)
 {
 Debug.Log("Hello");
 if (token.IsCancellationRequested)
 {
 return;
 }
 }
 }, token.Token);

 if (token.IsCancellationRequested)
 {
 Debug.Log("task was cancelled.");
 return; // further code will not be executed
 }

 // Code to be executed after the task completes successfully
 Debug.Log("task completed successfully.");
 }

Hope you understood the concept.

}

Await/Async in Unity

The original content is from the author Michael Quinn from Medium.com. It has been modified and
updated for use in this wiki.

Coroutines are amazing ways to sequence logic together over many frames. Asynchronous
programming, or async, allows the code to similarly be split over multiple frames, but allows for
multithreading which has the benefit of logic being concurrently executed instead of sequentially.

I have a very simple example that rotates cubes for a certain amount of time.

Converting A Coroutine To
An Async
Preface

This is an advanced topic! You should have an understanding of Object Oriented
Programming in C# as well as an understanding behind C# Delegates.

I could have translated the code below into code snippets, but I found it more important to
physically type what's needed for the sake of understanding.

About

The Coroutine Way

https://medium.com/unity-coder-corner/unity-converting-a-coroutine-to-an-async-and-never-looking-back-b5a78f91049f

This script will do a loop over all the cubes and trigger a coroutine that will rotate them. Setting this
function to run when a button is pressed and we have the following effect.

To convert the current method we are going to swap IEnumerator to async and then change the
yield to an await task.

The Async Way

With the proper using statement, we can simplify the naming and finish with the following code.

Get ready for the results! They are … exactly the same.

Okay so where is the power in this? The benefits are immense. The very first we may be able to see
was that I had to add a return type when converting the function from a coroutine to an async
method. Coroutines don’t return values like that.

To get around this shortcoming, I’ve had to do crazy things like this before.

Ugh, yuck. Who wants to read that? With async, everything is far more readable and easier when it
comes to return values.

The strongest immediate benefit of async is the power of multithreading. Coroutines run on what is
called the main thread. The longer it takes the main thread to move, the more lag your
application will experience. Async, however, can run on threads besides the main thread. This
benefit from async can give a major benefit to an applications performance.

Multithreading is not totally noticeable in this example, but this next benefit is. Async has the
ability to run sequentially using the keyword await.

But if Coroutines are made for sequential logic, then how is this a benefit? Coroutines are made for
sequential logic, but they are not made for sequentially executing coroutines.

Now, there are ways to sequentially execute coroutines. The absolute simplest way would be to
have a StartCoroutine() function at the end of a coroutine. This chaining however, will lead to

very difficult code to unpick when it comes time to refactor. A cleaner way to handle this with
async methods is using await.

Our first step is to change the return type, from void to Task. Then we can use the await
functionality by making the original function also async.

Now when we test this logic, we will see the cubes only rotate after the one before it is finished.

Another benefit, that might convince you to never use coroutines again, is that with async, you can
make logic wait until a series of tasks have completed.

To demonstrate this, I’m going to create a simple array of colors, then have the button change
ONLY after all the cubes have finished moving.

Before we change this logic, let’s see what we have currently.

Okay, so now with async, we will be able to change the behavior around so that all the cubes will
rotate at the same time, but the button will still only change after they are all finished.

We are going to want to create a list of tasks that we can add to, then check to see if all those
tasks have finished before changing the color of the button.

The entire code will now look like the following.

That’s pretty cool right there.

This article has only scratched the surface of the power of asynchronous programming but it has
definitely convinced me to make the switch from coroutines to async.

Takeaway

In Unity Hub, under the tab Installs, select the gear icon on your Unity installation and choose "Add
modules."

For Android builds, check Android Build Support, OpenJDK, and Android SDK & NDK
Tools.
For iOS, you MUST BE ON A MAC and choose iOS Build Support. You will also need
Xcode installed on your machine as well as the iOS Platform installed
(Xcode/Settings/Platforms/iOS xx.x). Finally, you have to be signed-in under
Xcode/Settings/Accounts

Ensure you have read the prerequisites above. Fire up Unity Hub and select New Project at the top.
Under All templates, select Universal 3D (you may have to Download template). Give your
project a name, location, and be sure to uncheck Connect to Unity Cloud. Select Create project
.

You will be greeted with the Unity Editor as well as the Build Settings window. The Build Settings
window can be found by selecting File/Build Settings. Select iOS or Android under Platform and
click the Switch Platform button.

Next, select the Player Settings button. On the left, choose XR Plugin Management and then
choose Install XR Plugin Management with the button that appears. Select the XR Plugin
Management tab again on the left. Check the plug-in providers you will be using. For instance,
iOS will use ARKit. If you receive a warning about using the new input system, choose YES and the
editor restarts.

AR Basics in Unity
Prerequisites

Do not install iOS Build Support on a Windows machine, you can only make Apple-based
builds using Xcode which is only available on the mac. This add-on is available for windows
machines for users who perform remote-builds, for instance.

Xcode generates a LOT of storage problems with cache to your machine without an intuitive
way to remove the cache. Occasionally, it's a good idea to remove it. I have provided a small
tool from the macOS App Store that I recommend: DevCleaner

Getting Started

https://apps.apple.com/us/app/devcleaner-for-xcode/id1388020431?mt=12

Return back to the Player Settings window. You will notice there is now a drop down under XR
Plug-in Management. Browse through these to see how the settings are enabled. Under Project
Validation, you may have issues here. Many can be fixed by selecting Fix All but you should
always read the errors.

You can now close these extra windows and return to the main Unity editor.

Go to Window/Package Manager. The button is small, but there is a dropdown button in the top left
of the Package Manager window (next to a '+') where you can switch between packages In Project
and Unity Registry. Switch to Unity Registry.

You can find additional packages here, depending on the Unity version. If you are looking to
support both Android and iOS devices, you can install additional packages here.

If you have set up VR in Unity before, the process is similar.

Click on the game object Global Volume and either delete it or disable it. Post processing is very
heavy with mobile devices.

Delete your Main Camera. Right click in the Hierarchy and choose XR/XR Origin (Mobile AR). This
creates your rig! Be sure to browse the components in the inspector including the children objects
so you obtain an understanding of what has been created. When finished, click somewhere in the
Hierarchy to unselect any game object.

Now, right click and choose XR/AR Session. Again, browse the components.

There is one last thing we need to do. We are using URP (Universal Render Pipeline), a modern way
to create design-friendly shaders and performance modes. Currently, we need to add a rendering
feature for AR so that our camera will work as intended in a build.

In your Project window, you will find a folder called Settings. This is a great folder for (as you would
expect) file-based settings for your project! Select each Renderer file (e.g. URP-Balanced-Renderer,
URP-HighFidelity-Renderer, etc.) and within the Inspector, click the button Add Renderer Feature.
Select AR Background Renderer Feature in the pop-up window. Again, do this for each file ending in
"-Renderer."

You may have the Read Me asset shown in the editor regarding URP. I usually click the
remove button to remove the extra files.

Install Packages (Optional)

AR Rig Setup

Build Settings

Let's set up a few settings in our Project Settings so that our project is better optimized for
assets/quality.

Go to File/Build Settings/Player Settings (same place we installed XR Plugin Management).

Under Quality you will find a grid-like area called Levels. Choose either Balanced or Performant
.

Select Player and choose the following

Company Name: Enter your name or the company name
Product Name: Change this if needed.
Other Settings/Bundle Identifier: Give a UNIQUE name here in reverse URL format.
E.g. com.scil.MyAwesomeProject
Other Settings/Camera Usage Description: For iOS, be sure something has been
added here or the build will fail.

If you are using an Android device you may need to be in developer mode. Depending on your
phone there are different procedures. After developer mode is set up, plug the phone into the
computer with a USB cord. Select "allow USB debugging" on your phone if the message appears.
Finally, under File/Build Settings, you can refresh in the drop down until your phone appears. After
it appears, select Build and Run.

Go to File/Build Settings and select Build. Create a new, empty folder to host the generated Xcode
generated files. Open the directory after the build completes. Inside will be an Xcode project file
called something like Unity-iPhone.xcodeproj. Open that file and a wild Xcode will appear.

On the far left in Xcode you will see a list of files and a blue root directory called
something like Unity-iPhone. Select that file and you will notice there are settings for the
overall app that appears. At the top left is a row with General, Signing & Capabilities,
Resource Tags, etc. Select Signing & Capabilities.
Under Signing & Capabilites, first check your Bundle Identifier. Change it to a unique
ID if not already in reverse URL order (e.g. com.scil.MyAwesomeProject). If you do not
have a unique ID, the build will fail.
Next check the box for Automatically manage signing.

Build Your Project
Android

iOS

iOS is tricky and it's best to decipher error messages as you get them. Results vary, but here
is a general step-by-step guide:

Under team, select your team (usually your signed-in account as Personal Team). If you
have the unique ID, everything should work.
Now, plug-in your iOS device you will be TESTING. Select allow after plugging in your
device.
You may need to set up Developer Mode, you can find info here
When you are ready select the big Play button icon after your device is configured. You
can also choose Product/Run.
The very last step, is the first time you run a project on your device the build will fail and
complain that this is an un-trustred developer. To "trust" yourself, you need to allow
projects with your ID within the device. Go to your device Settings/General/VPN & Device
Management and choose and allow your team. You will need to select Run again from
Xcode.

The initial setup is the most time consuming process, but you made it.

There are many paths to take when using AR. Try setting up more to your scene and placing
objects. You will notice even simple objects, such as a simple cube in Unity, are quite large!

Special technologies, such as plane-detection, image tracking, object tracking, and more are
available. I recommend starting with plane-detection which you can learn about here:
https://learn.unity.com/tutorial/configuring-plane-detection-for-ar-foundation#

You should now be able to play and test your project. The nice thing, is after your project
and device is configured, you won't have to run these extra steps again. The purpose for
these steps is Apple has heavy security on their platforms, as well as the walled-garden

Where to go from here?

https://developer.apple.com/documentation/xcode/enabling-developer-mode-on-a-device
https://learn.unity.com/tutorial/configuring-plane-detection-for-ar-foundation
https://www.fool.com/terms/a/apples-walled-garden/

